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Abstract

Peak detectors (peak-detect-and-hold circuits, PDHs) are a key element in nuclear electronics signal processing and

have been incorporated as a fully integrated block in several front-end readout chips. In CMOS designs, the PDH uses

an MOS current source as the rectifying element inside the feedback loop of a high-gain amplifier. However, the non-

idealities in the amplifier and feedback elements significantly limit its accuracy and stability.

This paper reports on the limits of the classical CMOS PDH. Static errors due to offset, finite gain, and common-

mode rejection, dynamic errors due to parasitic capacitive coupling and slew rate, and loop stability are analyzed.

Expressions for each error source and consequent design tradeoffs between accuracy, speed, and dynamic range, and

driving capability are derived. In a related article (Part 2), a two-phase PDH configuration, which overcomes the major

limits of the classical approach is presented. r 2002 Elsevier Science B.V. All rights reserved.

PACS: 07.50.E; 84.30; 85.40
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1. Introduction

Analog peak detectors (peak detect and hold
(PDH), also known as peak stretchers) are
important in pulse-processing circuits, where it is
impractical to digitize the entire waveform. Peak
detection is also used in automatic gain-control
loops in communication circuits. Fast and accu-
rate peak detectors have been developed using

discrete components, and monolithic designs have
also been reported [1–8]. However, the imperfec-
tions of monolithic technology (particularly
CMOS) compromise the performance. Amplifier
offset, finite gain, poor common-mode rejection,
low slew rate, and parasitic capacitance all affect
the accuracy of the peak-height measurement.
In this paper, we analyze the classical CMOS

PDH (and its variations) based on a MOSFET
current source as the rectifying element in the
feedback loop of a high-gain amplifier. The error
sources are grouped into two classes, static and
dynamic. Along with accuracy, we consider the
impact of each error source on speed, stability,
dynamic range, and driving capability. In Section
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2.1, we discuss the basic schematic and operation
of the CMOS PDH. In Section 2.2, we analyze the
static and dynamic sources of inaccuracy stem-
ming from imperfections of the rectifying current
source and high-gain amplifier. Section 2.3 dis-
cusses the feedback loop stability and compensa-
tion schemes. In Section 2.4, the output-driving
capability of the PDH is examined, and in Section
2.5, we comment on the current state-of-the-art.
In a related article [9], we present a two-phase

configuration, which overcomes the major limits of
the classical PDH.

2. Analysis of the classical CMOS PDH

2.1. PDH operation

A simplified schematic of the classical CMOS
PDH circuit for positive voltage pulses is shown in
Fig. 1. The analysis, which follows concerns PDH
for positive voltage pulses, but it can be easily
extended to the case of negative voltage pulses.
The p-MOSFET M1 acts both as a charging and

as a switching element. When a pulse ViðtÞ arrives
and is higher than the hold voltage Vh; the error
signal VeðtÞ ¼ VhðtÞ � ViðtÞ at the input of ampli-
fier A, generates a sharp negative transition of the
gate voltage Vg that switches M1 on. A current
IdðtÞ then charges the hold capacitor Ch until VeðtÞ
approaches zero. The gate voltage VgðtÞ is then
continuously adjusted by the loop to give IdðtÞ ¼
C V 0

i ðtÞ; where V 0
i ðtÞ is the slope of ViðtÞ: The

tracking condition VhðtÞ ¼ ViðtÞ persists until ViðtÞ
approaches its peak value ViðtpÞ ¼ Vip; when V 0

i ðtÞ
goes to zero. Then, the error signal VeðtÞ changes
sign and generates a sharp positive transition of Vg

that switches M1 off. Since there is no discharge
path available for Ch; VhðtÞ retains the peak value
of ViðtÞ: The hold condition with Vhðt > tpkÞ ¼
Vhp ¼ Vip is thus achieved. Examples of the signals
ViðtÞ; VgðtÞ and VhðtÞ are shown as insets in Fig. 1.

2.2. Error analysis

The accuracy of the classical CMOS PDH can
be affected by the non-ideality of M1 and A, which
contribute in several ways to the total error Vep ¼
Vhp � Vip: The individual error mechanisms will be
discussed in Sections 2.2.1 and 2.2.2.

2.2.1. Errors due to M1

The MOSFETM1 introduces errors through the
gate-to-drain capacitive coupling Cgd; the part of
the channel charge Qch injected into the drain node
(hold node), and the dependence of the drain
capacitance Cd on the drain voltage Vh and drain
current Id (see Fig. 2).
In order to evaluate these errors, M1 must be

suitably sized, which requires that the maximum
drain current Id;max of M1 must charge Ch

(assumed to be b Cd and Cgd) with a slew rate
equal to the maximum expected slope V 0

i max of the
input pulse ViðtÞ:

ChV 0
i max ¼ Id;max ¼

1

2
mpCox

W

L
VDD � Vg � VT

� �2
ð1Þ

Fig. 1. Simplified schematic of the classical CMOS PDH circuit

for positive voltage pulses.

Fig. 2. Schematic of the PDH showing sources of error from

M1:

G. De Geronimo et al. / Nuclear Instruments and Methods in Physics Research A 484 (2002) 533–543534



where W and L are the channel width and length
of M1; respectively, VT is its threshold voltage
(absolute value), mp is the hole mobility, and Cox is
the gate oxide capacitance density. From Eq. (1)
and imposing Vg;min ¼ 0 (the limiting case), it
follows that

CoxWL

Ch
E

2V 0
i maxL

2

mp VDD � VTð Þ2
: ð2Þ

The sharp positive transition dVg; which occurs at
the gate M1 in proximity of the peak is coupled to
the hold node through Cgd and it contributes an
error:

Ve;Cgd
¼ dVg

Cgd

Ch þ Cgd
EdVg

CoxWL

Ch

1

3
þ Z

� �
ð3Þ

where we assumed ChbCgdECox WL=3þ
CovWECoxWLð1=3þ ZÞ and Z is a coefficient
related to the drain-overlap capacitance typically
not higher than 1/5 for sub-mm CMOS technolo-
gies. The worst case occurs when the input pulse
has the maximum slope (V 0

i max) and a triangular
peak shape Assuming this worst case input pulse,
dVg ¼ VDD and it follows from Eq. (2) that

Ve;Cgd
EVDD

2V 0
i maxL

2

mpðVDD � VTÞ
2

1

3
þ
1

5

� �
: ð4Þ

The part of the channel charge Qch injected into
the hold node contributes an error, which can be
evaluated from QchECoxðVDD � Vg � VTÞ and by
assuming that about 1/3 of this amount affects the
hold node. It follows from Eq. (2) that

Ve;Qch
¼

Qch

Ch

1

3
E VDD � VTð Þ

CoxWL

Ch

1

3

¼
2V 0

i maxL
2

mpðVDD � VTÞ
1

3
ð5Þ

where we assumed again the worst case of a
triangular pulse with V 0

i ¼ V 0
imax:

The dependence of the drain capacitance Cd on
the drain voltage Vh and drain current Id
contributes an error that can be evaluated from
the charge partition as worst case:

Ve;Cd
E� Vhp

Cd

Ch
E� Vhp

CoxWL

Ch

1

3
þ x

� �
ð6Þ

where we assumed ChbCd and x is a coefficient
related to the drain to bulk capacitance typically

about 1/3 for sub-mm CMOS technologies. The
voltage and current dependence of x makes this
error contribution somewhat non-linear. Eq. (6) is
a conservative upper limit, which assumes that Cd

changes from E 100% to E 25% of its full value
(the drain overlap capacitance does not change) in
proximity of the peak. After Eq. (2) and for a
maximum Vhp equal to VDD; it follows as the
maximum error:

Ve;Cd
E� VDD

2V 0
i maxL

2

mpðVDD � VTÞ
2

1

3
þ
1

3

� �
: ð7Þ

In Fig. 3, the single contributions
Ve;Cgd

; Ve;Qch
; and Ve;Cd

are shown, in absolute
value and normalized to VDD; as functions of
V 0
i max for a 0.35 mm CMOS technology with

VDD ¼ 3:3V, VT ¼ 0:8V, mp ¼ 0:013m2/V s.
From the figure, we see that a >70 dB accuracy
can be easily achieved even for rail-to-rail trian-
gular pulses with peaking time of some tens of ns.
It is worth noting that, because the contributions
may be of different sign, some cancellation can
occur.
For pulses with finite peak curvature, as in the

semi-Gaussian case, the contributions are smaller
than those predicted by Eqs. (4), (5) and (7). In the
limiting case of a peak curvature approaching
zero, Ve;Cgd

is attenuated by a factor VT=VDD

(dVg ¼ VT) while both errors Ve;Cd
and Ve;Qch

approach zero.

Fig. 3. Error in peak height due to M1; normalized to VDD:
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2.2.2. Errors due to amplifier A

The amplifier A introduces errors through the
finite DC gain A0; the finite DC common mode
rejection ratio (CMRR), the common mode out-
put reference Vo;cm; the input offset Voff ; the input-
to-input capacitive coupling Cc; the dependence of
the input capacitance Ci on the input voltages Vþ

i

and V�
i ; and the finite speed of A (see Fig. 4). The

first four parameters (A0; CMRR, Vo;cm; and Voff )
contribute an error Ve;DC; which can be evaluated
from Fig. 4 as follows:

Vo;cm þ A0 Vh � Voff ðViÞ � Við Þ

þ
A0

CMRR

Vh þ Vi � VDD

2
EVgp ð8Þ

where Vo;cm is the common mode output reference
for Vþ

i ¼ V�
i ¼ VDD=2; Vgp is the gate voltage in

proximity of the peak and we put in evidence that
the offset can be voltage-dependent (e.g. rail-to-
rail input configurations for low voltage supply).
By approximating in Eq. (8), Vh þ ViE2Vi and by
solving for Ve;DC ¼ Vh � Vi; we obtain

Ve;DCE
Vgp � Vo;cm

A0
þ Voff �

1

CMRR

2Vi � VDD

2
:

ð9Þ

For very large values of A0 and CMRR, the error
Ve;DC turns out to be limited by the offset voltage
Voff : This voltage is related to the mismatch
between the input MOSFETs of the input differ-
ential stage. For a 0.35 mm CMOS technology with
Li ¼ 0:4 mm, and assuming a minimum offset
layout (i.e. common centroid), the standard
deviation of Voff ; expressed in rms volts, is given

by

VoffE
Avtffiffiffiffiffiffiffiffiffiffiffi
WiLi

p ð10Þ

where Avt is a coefficient which depends on the
technology (E8� 10�9 Vm in our case [10]). In
Fig. 5, the normalized error Voff=VDD is shown as
function of the gate width Wi for Li ¼ 0:4 mm. It
can be seen that in order to achieve a >60 dB
accuracy, the value of Wi must be at least 10 mm.
After the peak has been detected, the fast

negative-going edge of the pulse (with amplitude
dVi) is present at the inverting input of A. This
edge is coupled to the hold node through Cc; where
it contributes an error

Ve;Cc
EdV i

Cc

Ch
EdVi

CoxWiLi

Ch

1

2

2

3
þ Z

� �
: ð11Þ

In Eq. (11), we assumed an input differential stage
for A, with Wi and Li being, respectively, the gate
width and length of the input MOSFETs,
ChbCcECox Wi Lið2=3þ ZÞ=2: Assuming the
worst case of a transition dVi ¼ VDD and Z ¼
1=5 it follows from Eq. (11) that

Ve;Cc
EVDD

CoxWiLi

Ch

1

2

2

3
þ
1

5

� �
: ð12Þ

The dependence of the input capacitance Ci on the
input voltages Vþ

i and V�
i contributes an error,

which can be evaluated from the charge partition
for a maximum Vhp ¼ VDD; by considering that

Fig. 4. Schematic of the PDH showing sources of error from

amplifier A.

Fig. 5. Normalized error in peak height due to amplifier input

capacitance and offset, as a function of input transistor gate

width. In this simulation Li ¼ 0:4 mm and Ch¼ 2 pF:
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the input MOSFET enters the linear region and
that the overlap capacitance does not change:

Ve;Ci
EVhp

Ci

Ch
EVDD

CoxWiLi

Ch

1

3
: ð13Þ

In Fig. 5, the total input coupling error Ve;Ca
¼

Ve;Cc
þ Ve;Ci

normalized to VDD is shown as a
function of the gate width Wi; for Ch ¼ 2 pF and
Li ¼ 0:4 mm. In order to achieve a>60 dB accu-
racy, the gate width Wi must beo2 mm. Since this
requirement conflicts with the one for minimizing
the error due to offset (see Eq. (12)), a compromise
between the two should be adopted. The result of
this compromise (see Fig. 5) shows that even if
relatively large values for Ch are used, a 60 dB
accuracy is no more achievable. The introduction
of an input series switch that opens once the peak
is detected may partially attenuate the contribu-
tion due to Cc:
The finite speed of A contributes an additional

error Ve;a that should be calculated by solving the
following non-linear differential equation:

ChV 0
h ¼ IDðVh;VgðVh;ViÞÞ ð14Þ

where the function IDðVh;VgÞ models the MOS-
FET M1 and it is non-linear, and the function
VgðVh;ViÞ models the amplifier A and, for the
stability issues discussed later in this section, it
may also be non-linear. A worst case approxima-
tion of the error Ve;a can be obtained by assuming
a triangular pulse with rise slope V 0

i ¼ V 0
i max and

zero fall time. Once in proximity of the peak, the
gate signal must perform a worst case transition
from 0 to VDD: If the output stage of A is slew rate
limited to V 0

g;max; the time required to switch M1

off is ðVDD � VTÞ=V 0
g;max: The hold signal Vh

consequently exhibits a worst case error:

Ve;aE�
V 0
i

V 0
gmax

ðVDD � VTÞ: ð15Þ

In Fig. 6, the accuracy Ve;a=VDD as function of
V 0
i max for a reasonable value of V 0

gmax ¼ 1010 V/s is
shown. In the same figure, the contribution Ve;DC

from Eq. (9) (case Vo;cm ¼ VDD � VT; Voff ¼ 0;
CMRR ¼ N and A0 ¼ 103) and the sum of both,
in absolute value and normalized to VDD; are also
shown. Due to the opposite signs of contribution
(16), cancellation occurs in this case for

V 0
imaxE10

7 V/s. From Fig. 6, it can also be
observed how the contribution Ve;a may compen-
sate part of the contribution Ve;DC: In Fig. 7, a
simulated detail around the 3.3V peak of the
triangular pulse for the two limiting cases of Fig. 6
is shown (the contribution Ve;DC may resemble a
delay). Again, for pulses with finite peak curva-
ture, as in the semi-Gaussian case, the contribution
Ve;a is smaller than that predicted by Eq. (15). In
the limiting case of a peak curvature approaching
zero, Ve;a also approaches zero.
In summary, the accuracy of the classic CMOS

PDH of Fig. 1 is limited by static and dynamic
errors arising from the non-idealities of the

Fig. 6. Normalized errors due to finite slew rate (Eq. 14) and

input mismatch (Eq. 8). Due to the different sign of the two

contributions, cancellation occurs in this case for V 0
imaxE10

7 V/

s.

Fig. 7. Simulation of the detail around the 3.3V peak of a

triangular pulse for the two limiting cases of Fig. 6.
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rectifying current source and the error amplifier. A
total of ten error sources have been considered in
this section and approximate expressions for their
contributions are given in Eqs. (4), (5), (7), (9),
(12), (13) and (15). The most important static error
source is the amplifier offset. Dynamic errors are
more serious for fast input waveforms with abrupt
transitions.

2.3. Stability analysis

2.3.1. Simple PDH

Due to the finite bandwidth of A, the config-
uration shown in Fig. 1 may exhibit, in the track
state, a critically damped or even unstable
response. In Fig. 8, a PSpice simulation of an
underdamped response for the case AðsÞ ¼
103=ð1þ s�10�7Þ; Ch¼ 1 pF and W=L=2 mm/
0.4 mm is shown. Clearly, ringing of the hold node
will degrade the accuracy of the PDH.
The stability in the track state can be investi-

gated by evaluating the small-signal transfer
function F ðsÞ ¼ VhðsÞ=ViðsÞ from the schematic of
Fig. 9. In the figure, the MOSFET M1 is repre-
sented by a simplified equivalent circuit (gm; ro)
and the amplifier is approximated as having a
single pole response. Hence, the PDH behaves as a
two-pole system, with one pole at oa contributed
by the amplifier and another at oh associated with
M1 and the hold capacitor Ch: The small-signal
parameters gm and ro depend on Vg (i.e. depend on
V 0
i ).
In the tracking state, the transfer function

changes with Vi depending on its slope V 0
i : To

each value of V 0
i correspond specific values of the

transconductance gm and output resistance ro of
M1: The maximum value of gm and minimum
value of ro are achieved when V 0

i reaches its
maximum. The time constant th ¼ Chro; reaches
its minimum. Conversely, the minimum value of
gm and maximum value of ro are achieved when V 0

i

reaches its minimum (i.e. in proximity with the
peak). The time constant th; reaches its maximum
and, indeed, approaches an infinite value. The pole
oh is consequently the dominant pole of the loop
at this time. In order to avoid an underdamped
response, it becomes necessary, but not sufficient,
that the pole oh remains dominant during all the

tracking, even when oh reaches its maximum value
(i.e. when the slope V 0

i reaches its maximum),
which means: oh5oa during all tracking. This
leads to a constraint on the gain-bandwidth
product (GBW) of the amplifier (see Appendix A):

GBWX
4A2

0V
0
i max

p VD � VTð Þ
: ð16Þ

The condition (16) can impose unfeasible values
on the GBW of the amplifier when reasonable
values of A0 (>10

3) are used and fast pulses need
to be processed. For instance, in order to handle
500 ns pulses and maintain an error of o0.1%
(A0 > 103), the amplifier needs a gain-bandwidth
product in the THz range.
Techniques for stabilizing the loop in order to

increase the speed of the classical PDH were
widely investigated in the past [11,12]. Placing a
cascode stage in series with M1; together with a

Fig. 8. PSpice simulation of an underdamped response of the

PDH to a semi-Gaussian pulse.

Fig. 9. Simplified schematic of the PDH for evaluating the

stability of the loop.
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current generator parallel to M1 to minimize the
changes in gm does not improve the stability; the
net result is to increase the DC loop gain and to
shift of the dominant pole to a lower frequency.
Moreover, an additional parasitic pole at the
source of the cascode is added to the loop.

2.3.2. Lead-lag compensation

Another solution consists of a resistor Rh in
series with Ch as shown in Fig. 10. The net result is
to introduce a zero in the loop gain, thus
effectively improving the stability. The condition
for the stability leads to (see Appendix B)

Rh >
4

oaCh
: ð17Þ

On the other hand, the signal VC (see Fig. 10) is
subject to a first-order low-pass filtering (time
constant ChRh) with respect to the tracking signal
Vh: The value stored in Ch is consequently the
value of VhðtÞ at tEtpk þ ChRh; with an attenua-
tion with respect to the peak of Vh of the order of
V 0
i maxChRh (limiting case).
In Fig. 11, a simulation under the same condi-

tions of Fig. 8 but with Rh ¼ 10 kO is shown. Now
the response is properly damped, but the stored
peak is subject to the described error. Even if this
additional error is linear, its dependence on Rh and
on the curvature of the peak suggests its mini-
mization, which corresponds to the condition

Rho
eVDD

ChV
0

imax

ð18Þ

where e�1 is the relative peak height accuracy
required (i.e. 10�3 for a 60 dB accuracy). The
condition (18) strongly limits Rh down to values
that may conflict with the stability condition (19).
For instance, in order to handle 500 ns pulses and
maintain an error of o0.1% (A0 > 103) with a
GBWE10GHz, the condition (16) leads to
ChRh> 0:64� 10�7 s while the condition (17) leads
to ChRho0:5� 10�9 s. As a design criterion, the
maximum value of Rh that satisfies the condition
(18) should be used, being also aware that
additional compensation techniques may probably
be required to avoid an underdamped response.

2.3.3. Current-mirror compensation

The current-mirror-like compensation techni-
que, suggested by Kruiskamp and Leenaerts in
1994, is the last and most effective to this aim, and
can be combined with lead-lag compensation to
achieve a properly damped PDH. The configura-
tion originally proposed by Kruiskamp and
Leenaerts [1], is shown schematically in Fig. 12.
It uses a current mirror, Mg�M1; as the rectifying
element. The current mirror is driven by an
operational transconductance amplifier (OTA)
G0; which serves the same purpose as the error
amplifier A in Fig. 1. The stability of this config-
uration is easier to achieve when compared to the
simple PDH of Fig. 9, because the dominant pole

Fig. 10. Schematic of the PDH stabilized by the addition of

series resistor Rh:

Fig. 11. PSpice simulation of a properly damped response of

the PDH as in Fig. 10 to a semi-Gaussian pulse.
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of the amplifier oa varies with the input slew rate
V 0
i in the same way as the dominant pole oh:When

V 0
i increases during tracking, the transconductance
of Mg increases, raising the pole frequency oa at
the same time, as the dominant pole oh is also
increasing due to increasing gm:
In Appendix C, the stability analysis of this

configuration is reported. It is also shown how the
condition for a properly damped system leads to a
minimum value for the gate width Wg of Mg

(Eq. C.8) and to a corresponding maximum value
for the voltage gain A0;max ¼ G0rg (Eq. C.9),
depending on the maximum input slope V 0

imax

and on the value of the parasitic capacitance Cgp at
the output of the OTA. For instance, in order to
handle 100 ns pulses with CgpE100 fF; a minimum
WgE20 mm is required for A0 ¼ 104; and a
maximum value of A0E5� 104 is allowed.
Due to its effectiveness and versatility, the

solution of Fig. 12 will be adopted as state-of-
the-art for the stabilization of the classical CMOS
PHD. The condition on A0;max can be further
relaxed if the compensation resistor Rh; as shown
in Fig. 10 and previously discussed, is added.

2.4. Driving capability

Some type of buffer must be used in order to
read out the hold capacitor without disturbing the
stored peak value Vhp: If an out-of-loop buffer is
introduced as shown in Fig. 13a, an additional
non-negligible error may be introduced due to

non-ideality of the buffer (finite open-loop gain,
finite CMRR, voltage-dependent offset, non-line-
arity, etc.) and switching activity of multiplexing
when the buffer is shared by more than one PDH.
If an in-loop buffer is introduced as shown in
Fig. 13b, the effect of the non-ideality of the buffer
is minimized, at a cost of further design effort to
stabilize the loop and additional area and power if
multiplexing occurs.
A widely used technique to provide driving

capability with minimum area, power dissipation
and impact on the loop stability is a MOSFET
source follower Mf as shown in Fig. 13c, where for
simplicity, we omitted the current source for Mf :
This solution has two major drawbacks. First, the
overall dynamic range decreases by an amount

Fig. 13. Buffering techniques to provide driving capability to

the classical PDH: (a) buffer outside the loop; (b) buffer in the

loop; (c) source follower in the loop.

Fig. 12. Schematic of the PDH stabilized through the current-

mirror.
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equal to the threshold voltage VT of Mf : This
impact is important in sub-mm technologies where
VDD is limited to a few times VT: Second, the gain
of the follower depends on the load when the loop
is open, and the impact may be relevant if the
PDH is heavily loaded, as in driving a highly
multiplexed bus.

2.5. The current state-of-the-art configuration

In Fig. 14, the complete schematic proposed by
Kruiskamp and Leenaerts in 1994 and adopted
and improved by other research groups [6–8] is
shown. It is the opinion of the authors that this
configuration represents the current state-of-the-
art in CMOS PDH circuits. The OTA is realized
by a differential stage, and a MOSFET switch Mrst

is added for resetting the hold node. From the
previous analysis, the following major limitations
apply to this configuration:

* OTA limited in DC gain A0 and CMRR, with
consequent impact on the accuracy according to
the first and third terms of Eq. (9).

* OTA characterized by high values of Voff

(mismatch between input MOSFETs Ma and
Mb and asymmetry of the differential stage),
with consequent impact on the accuracy ac-
cording to the second term of Eq. (9). It also
forces the choice of gate widths Wi towards
larger values as shown in Fig. 5.

* OTA characterized by high values of Ci and Cc

(from previous constraint), with consequent

impact on the accuracy according to Eqs. (12)
and (13).

* OTA limited in input common mode range due
to the threshold voltage of Ma and Mb and
saturation voltage of Ii; with consequent
inability to process pulses of absolute amplitude
below (VDD � VT � Vdsat).

* OTA limited in output dynamic range due to
the saturation of Ma with consequent inability
to drive gate voltages Vg below
(Vi � VT þ Vdsat). Eq. (1) must be modified
forcing the choice of a larger size for M1 with
consequent impact on the accuracy according to
Eqs. (3), (5) and (6). The negative impact on the
equations for the stability must also be con-
sidered (see Section 2.3).

* Dynamic range limits make this circuit less
useful in scaled CMOS with low supply voltage.

* PDH limited in driving capability due to Mf as
discussed in Section 2.4.

Results have been reported from an improved
version of this configuration operating at very low
power [6]. For slow pulses (10 ms peaking time), an
excellent linearity (o0.1%) was demonstrated, but
with an overall dynamic range limited to VDD=2
and pedestals up to several tens of mV.

3. Conclusions

Classical CMOS PDH circuits have been ana-
lyzed. They have found widespread application

Fig. 14. Complete schematic of the PDH proposed by Kruiskamp and Leenaerts in 1994.
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and we have tried to understand their limits before
making a further step in their development. The
major error sources, stability and driving capabil-
ity were analyzed. It was shown that, due to offset
and capacitive coupling, the absolute accuracy
achievable by the classical configuration is limited
to the percent range. The same limits apply to the
configuration, which represents the current state-
of-the-art in CMOS PDH.
A novel two-phase approach, which overcomes

the major limits was consequently developed. We
report on this configuration in a related paper
(Part 2).
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Appendix A

Under the assumption A0gmrob1; the transfer
function F ðsÞ ¼ VhðsÞ=ViðsÞ can be approximated:

F ðsÞ ¼
VhðsÞ
ViðsÞ

E
1

s2
1

ohoaA0gmro
þ s

oh þ oa
ohoaA0gmro

þ 1
: ðA:1Þ

The damping factor d can be easily calculated and
approximated as

d ¼
oh þ oa

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ohoaA0gmro

p E
1

2

ffiffiffiffiffiffiffiffiffiffiffi
oaCh

A0gm

s
: ðA:2Þ

The maximum value gm;max of gm which corre-
sponds to the maximum expected slope V 0

i max can
be evaluated by differentiating Eq. (2) with respect
to Vg and by imposing Vg ¼ 0:

gm;max ¼ mpCox
W

L
ðVDD � VTÞ ¼

2ChV
0

imax

VDD � VT
: ðA:3Þ

The minimum value dmin of d turns out to be

dminE
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oaCh

A0gm;max

s
¼

1

2
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oaðVDD � VTÞ

A0V
0

imax

s
: ðA:4Þ

The system is properly damped when dminX1; i.e.
when

A0

oa
X
1

8

VD � VT

V
0

imax

ðA:5Þ

which translates into Eq. (17) by considering that
2pGbwp ¼ A0oa:

Appendix B

The transfer function F ðsÞ becomes

F ðsÞ ¼
VhðsÞ
ViðsÞ

E
1þ sg=oh

s2
1

ohoaA0gmro
þ s

oh þ oa 1þ gA0gmroð Þ
ohoaA0gmro

þ 1

ðB:1Þ

where g ¼ Rh=ro: The damping factor dmin can be
easily calculated and approximated assuming
g51:

dminE
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oaCh

A0gm;max
ð1þ A0gm;maxRÞ

s
ðB:2Þ

which suggests that, in order for Rh to be effective,
A0gm;maxRhb1 should be satisfied. For a properly
damped system, this leads to Eq. (18).

Appendix C

The OTA is characterized by a transconduc-
tance DC gain G0 and by a dominant pole located
at the output node with time constant:

1

oa
¼

Cgrg

1þ rggm;g
ðC:1Þ

where Cg is the total output capacitance, rg the
(ideally infinite) OTA output resistance and gm;g is
the transconductance of Mg: With this approach,
the DC voltage gain A0 from the differential input
to the gate of M1 turns out to be

A0 ¼
G0rg

1þ rggm;g
: ðC:2Þ
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By replacing A0 and oa from Eqs. (C.1) and (C.2)
into Eq. (A.2), the damping factor d becomes

dE
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Chð1þ rggm;gÞ

2

CgG0r2ggm

s
E
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Chð1þ lrggmÞ

2

CgA0;maxrggm

s
ðC:3Þ

where l is the ratio between Wg of Mg and W of
M1 (Lg ¼ L is required for matching reasons), and
A0;max is the maximum DC voltage gain, achieved
in proximity of the peak where gm approaches
zero. Eq. (C.3) has a minimum dmin for
rggm ¼ l�1:

dminE
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4lCh

CgA0;max

s
: ðC:4Þ

By imposing dminX1; the condition on l follows

lXA0;max
Cg

Ch
ðC:5Þ

which, by putting in evidence Wg; becomes

WgXWA0;max
Cgp þ CoxWgLð1=3þ ZÞ

Ch
; ðC:6Þ

where Cgp is the parasitic capacitance non-related
to Mg and CgECgp þ CoxWgLð1=3þ ZÞ: Solving
condition (C.6) for Wg the following results:

WgX

WA0;max
Cgp

Ch

1� A0;max
CoxWL

Ch
1=3þ Z
� � ðC:7Þ

which, from Eq. (3) gives (Z ¼ 1=5):

WgX

A0;max
2V 0

imaxL

mEðVDD � VTÞ
2

Cgp

Cox

1� A0;max
2V

0

imaxL
2

mPðVDD � VTÞ
2
ð1=3þ 1=5Þ

ðC:8Þ

effective until

A0;maxo
mPðVD � VTÞ

2

2V
0

imaxL
2

1

ð1=3þ 1=5Þ
: ðC:9Þ
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